Friday, December 26, 2025
ADVT 
Health

Paralyzed Man Feels Touch Through Mind-Controlled Robot Hand

Darpan News Desk IANS, 13 Oct, 2016 12:21 PM
    WASHINGTON — A paralyzed man is regaining a sense of touch while using a mind-controlled robotic hand, feeling subtle pressure in his own fingers when the artificial ones are touched. The experiment reported Thursday is an early step in the quest to create prosthetics that can feel.
     
    How it works: Tiny chips implanted in Nathan Copeland's brain are bypassing his broken spinal cord, relaying electrical signals that govern movement and sensation to and from that robotic arm.
     
    When University of Pittsburgh researchers blindfolded Copeland, he could correctly identify which robotic finger they touched 84 per cent of the time.
     
    "The majority of them, it felt like a pressure or a tingling" in his own corresponding finger, said Copeland, 30, of Dunbar, Pennsylvania. When a researcher touched two fingers at the same time, "I just laughed and I said, 'Are you trying to be tricky or something?"
     
    Harnessing brain waves to power prosthetics is a hot field, with a goal of giving the disabled more independence and improving artificial limbs for amputees as well. Headlines in recent years have reported experiments that let paralyzed people move a robotic arm to touch a loved one or take a drink simply by imagining the motion. Their thoughts activate brain implants that relay electrical signals needed to command movement. The signals are transmitted through a computer to the robotic limb.
     
    What's new is recreating sensation using this brain-controlled technology. After all, proper motion depends on more than muscle movement. Reach for something and that sense of touch helps you naturally grasp with just enough force to hang on while not either dropping something or crushing it.
     
    "It's not only that emotional connection we get," said Robert Gaunt, a Pittsburgh assistant professor of rehabilitation who led the new study. "People have an incredibly difficult time interacting with objects, picking objects up, manipulating them, doing fairly basic things with the hand if they don't have a very basic sense of touch."
     
    Step one is placing sensors in prosthetics. The next hurdle is how to allow feedback to and from those sensors. For amputees, some scientists are attempting to wire nerves left in the remaining part of the person's natural limb directly to the robotic arm.
     
    That's not possible if a spinal cord injury has interrupted the messages that normally flash between the hand and the brain. But previous monkey research had suggested brain implants could bridge that gap. So surgeons at the University of Pittsburgh Medical Center implanted electrodes in part of Copeland's brain that controls what his hands feel.
     
    Electrically stimulating those cells worked even though the car wreck that left Copeland mostly paralyzed happened over a decade ago, Gaunt noted.
     
    "This shows you can get natural sensation" through the brain implant, added Pittsburgh neurobiologist Andrew Schwartz.
     
    Thursday's report in Science Translational Medicine details the first six months of experiments after Copeland received the brain implants in March 2015. The ongoing research is becoming more sophisticated, as he picks up objects while the electrodes stimulate different amounts of force, Copeland said in a phone interview.
     
    While the work is in just one patient, it's a step toward creating touch capability, said Richard Andersen, a neuroscientist at the California Institute of Technology whose team also studies mind-controlled prosthetics and is about to begin a similar experiment.
     
    "It still needs to be determined if this tactile feedback will improve performance" in using the robotic arm, Andersen cautioned.
     
    Copeland doesn't get to take the robotic arm home but is proud of helping to advance the science.
     
    "Technically when it's over, I will have netted nothing except having done some cool stuff with some cool people," Copeland said. "It's cheesy but, Luke Skywalker loses his hand and then basically the next day he's got a robot one and it's working fine. We have to get to that point, and to do that, someone has to start it."

    MORE Health ARTICLES

    More teenage boys seeking trust not sex: Study

    More teenage boys seeking trust not sex: Study
    Contrary to popular belief, a significant study shows that teenage boys are not looking for sex but intimate and meaningful relationships with the opposite sex.

    More teenage boys seeking trust not sex: Study

    Men out-talk women in large settings

    Men out-talk women in large settings
    Contrary to the stereotype that women talk more than men, researchers have found that there is an interplay between the context and gender and men can out-talk women in large settings, but women do the most talking in small settings.

    Men out-talk women in large settings

    Want babies? Avoid being a night owl

    Want babies? Avoid being a night owl
    For women who want to conceive, stop staying up late at night as every time you turn on the light, it slows down the production of the fertility hormone.

    Want babies? Avoid being a night owl

    High cholesterol can cause cancer

    High cholesterol can cause cancer
    Bad cholesterol has just become worse. Known to cause heart disease and hardening of the arteries, it has now been linked with a cell pathway that promotes cancer.

    High cholesterol can cause cancer

    Interruptions affect quality of work

    Interruptions affect quality of work
    Does your colleague call you out every two minutes just to see his/her picture during college days or a Facebook update even as you try to write an important report?

    Interruptions affect quality of work

    Parkinson's boosts creativity: Study

    Parkinson's boosts creativity: Study
    If you are in a creative profession, Parkinson's may be a blessing in disguise as researchers have found that patients of the nerve cells disease in the area of brain are more creative than their healthy peers.

    Parkinson's boosts creativity: Study